The Crystal Structures of NbBe_{2} and $\mathrm{NbBe}_{3}{ }^{*}$

By Donald E. Sands, Allan Zalkin and Oscar H. Krikorian
Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 24 October 1958)

Abstract

NbBe_{2} has a face-centered cubic cell, $a=6.535 \AA$; the space group is $F d 3 m$; and there are eight formula units in the unit cell. Each niobium atom is surrounded by 12 Be atoms at $2.71 \AA$ and 4 Nb atoms at $2 \cdot 83 \AA$. Each beryllium atom has 6 Nb atoms at $2 \cdot 71 \AA$ and 6 Be atoms at $2 \cdot 31 \AA$ as nearest neighbors. NbBe_{3} has a rhombohedral cell with $a=7.495 \AA, \alpha=35 \cdot 43^{\circ}$; the space group is $R \overline{3} m$, and there are three formula units in the unit cell. There are two kinds of niobium atoms. Nb_{I} has 18 Be and 2 Nb nearest neighbors at average distances of $2.78 \AA$ and $2.95 \AA$, respectively; $\mathrm{Nb}_{\text {II }}$ has 12 Be and 4 Nb nearest neighbors at average distances of $2 \cdot 64 \AA$ and $2.88 \AA$, respectively.

Introduction

The structure of NbBe_{12} was determined by von Batchelder \& Raeuchle (1957). White \& Burke (1955) mention a cubic NbBe_{2} phase. A hexagonal NbBe_{3} phase with $a=4 \cdot 57 \AA$ and a large c axis was reported by Baenziger, Wilson \& Snow (1946). We have obtained single crystals of NbBe_{2} and NbBe_{3}, and the detailed structural analyses of these compounds have been completed.

Experimental

The Nb-Be compounds were prepared by reaction of niobium and beryllium powder mixtures in a vacuum induction furnace. Reactants were 200 -mesh niobium of 99.9% purity and 100 -mesh beryllium of 99% purity. Samples were heated in molybdenum crucibles for about 20 minutes at $1350-1500^{\circ} \mathrm{C}$. under a vacuum of $10^{-4} \mathrm{~mm} . \mathrm{Hg}$. Negligible crucible attack was noted. In order to grow single crystals of suitable size, samples were reheated in BeO crucibles to $1600^{\circ} \mathrm{C}$. in vacuum for about 10 minutes. The resulting samples were crushed, and crystals were selected for X-ray examination.

The cell constants and diffraction symmetries of NbBe_{2} and NbBe_{3} were obtained from Weissenberg, precession, and powder photographs using $\mathrm{Cu} K \alpha$ radiation $(\lambda=1.5418 \AA)$. Intensity measurements were carried out with Mo $K \alpha$ radiation ($\lambda=0.7107 \AA$) on a General Electric XRD-5 X-ray Spectrometer equipped with a single crystal orienter. No absorption corrections were made.

Structure determinations

$\mathrm{NbBe}{ }_{2}$
NbBe_{2} has a face-centered cubic cell with

$$
a=6.535_{ \pm 0} .002 \AA .
$$

[^0]The diffraction symmetry and extinction conditions are characteristic of space groups $F d 3$ and $F d 3 m$. Furthermore, reflections with $h+k+l=4 n+2$ are very weak or absent.

As no accurate density measurements were available, the number of atoms per unit cell was deduced from a calculation of atomic volumes. In the elemental metals, niobium and beryllium atoms occupy $18 \AA^{3}$ and $8 \AA^{3}$, respectively. A NbBe_{2} group is thus estimated to occupy $34 \AA^{3}$; the unit cell can accommodate about eight such groups. This type of calculation was carried out on other beryllium intermetallics of known structure and was found to give reliable results. The X-ray density of NbBe_{2} is $5 \cdot 28$ g.cm. ${ }^{-3}$.

The atoms occupy special positions for which there is no distinction between space groups $F d 3$ and $F d 3 m$. These positions, which are uniquely determined, are

> 8 Nb in $8 a:\left(0,0,0 ; \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)+$ face-centering;
> 16 Be in $16 d:\left(\frac{5}{8}, \frac{5}{8}, \frac{5}{8} ; \frac{5}{8}, \frac{7}{8}, \frac{7}{8} ; \frac{7}{8}, \frac{5}{8}, \frac{7}{8} ; \frac{7}{8}, \frac{7}{8}, \frac{5}{8}\right)+$ face-centering.

This structure is one of the cubic Laves or Friauf phases (MgCu_{2} type) (Friauf, 1927), of which AgBe_{2} (Misch, 1936; Winkler, 1938) and TiBe_{2} (Misch, 1936; Ehrlich, 1949) are other examples.
The structure was confirmed by the measurement of the intensities of 43 hhl reflections. A single isotropic temperature factor $B=0.4 \AA^{2}$ was applied to all atoms, and the $h h l$ structure factors were calculated from the atomic parameters, using the Thomas-Fermi scattering factors for Nb (Klug \& Alexander, 1954) and the Berghuis et al. (1955) scattering factors for beryllium. The reliability coefficient,

$$
R=\Sigma\left|F_{o}-F_{c}\right| / \Sigma\left|F_{o}\right|,
$$

was 0.076 .
The nearest neighbor distances in NbBe_{2} are given in Table 1.

Table 1. Interatomic distances in NbBe_{2}

$\mathrm{Nb}-4 \mathrm{Nb}$	$2 \cdot 830 \pm 0.001 \AA$
-12 Be	$2 \cdot 709 \pm 0.001$
$\mathrm{Be}-6 \mathrm{Nb}$	$2 \cdot 709 \pm 0.001$
-6 Be	$2 \cdot 310 \pm 0.001$

NbBe_{3}
NbBe_{3} is rhombohedral with

$$
a=7 \cdot 495 \pm 0 \cdot 007 \AA, \quad \alpha=35 \cdot 43 \pm 0 \cdot 04^{\circ}
$$

The dimensions of the triply primitive hexagonal cell are

$$
a=4 \cdot 561 \pm 0 \cdot 005, \quad c=21 \cdot 05 \pm 0 \cdot 02 \AA
$$

The diffraction symmetry is characteristic of space
groups $R \overline{3} m, R 3 m$, and $R 32$. The volume of an NbBe_{3} group is estimated to be $42 \AA^{3}$; the number of such groups in the hexagonal unit cell is nine. The calculated density is $4.72 \mathrm{~g} . \mathrm{cm} .^{-3}$.

The uniformity in intensity of all reflections with the same hexagonal l index suggests placing the niobium atoms along the three-fold axes. The Patterson projection onto the hexagonal c-axis, $P(w)$, leads to the following atomic positions, in terms of $R \overline{3} m$:
$3 \mathrm{Nb}_{\mathrm{I}}$ in $3 a: \quad(0,0,0)+\left(0,0,0 ; \frac{1}{3}, \frac{2}{3}, \frac{2}{3} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$;
$6 \mathrm{Nb}_{\text {II }}$ in $6 c: \pm(0,0, z)+\left(0,0,0 ; \frac{1}{3}, \frac{2}{3}, \frac{2}{3} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right)$ with $z=0 \cdot 14$.
(International Tables of X-ray Crystallography, 1952).
Table 2. Calculated and observed structure factors for NbBe_{3}

Table 3. Atomic parameters in NbBe_{3}

Position	Atom	x	y	z	B
$3(a)$	$\mathrm{Nb}_{\text {I }}$	0.0000	0.0000	0.0000	$0.6 \mathrm{~A}^{2}$
$6(c)$	$\mathrm{N} \mathrm{e}_{\text {II }}$	0.0000	0.0000	0.1402 ± 0.0002	0.6
$3(b)$	Be	0.0000	0.0000	0.5000	0.6
$6(c)$	$\mathrm{Be} \mathrm{e}_{\text {II }}$	0.0000	0.0000	0.3344 ± 0.0020	0.5
$18(h)$	Be III	0.504 ± 0.010	0.496 ± 0.010	0.0818 ± 0.0012	1.2

The structure thus contains linear chains of three niobium atoms.

Beryllium positions may be derived by surrounding the terminal niobium atoms of these linear chains with the beryllium configuration which was found around the niobium atoms in NbBe_{2}. Twenty-one beryllium atoms are placed by this method, and the remaining six are packed around the central niobium of the chain. The structure thus obtained conforms to the diffraction symmetry, and in terms of $R \overline{3} m$ the beryllium positions are:

$$
\begin{aligned}
& 3 \mathrm{Be}_{\mathrm{I}} \text { in } 3(b): \quad\left(0,0, \frac{1}{2}\right)+\left(0,0,0 ; \frac{1}{3}, \frac{2}{3}, \frac{2}{3} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \text {. } \\
& 18 \mathrm{Be}_{\text {III }} \text { in } 18(h): \pm(x, \bar{x}, z ; x, 2 x, z ; 2 \bar{x}, \bar{x}, z) \\
& +\left(0,0,0 ; \frac{1}{3}, \frac{2}{3}, \frac{2}{3} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\
& \text { with } x=0.50, z=0.07 \text {; } \\
& 6 \mathrm{Be}_{\text {II }} \text { in } 6(c): \pm(0,0, z)+\left(0,0,0 ; \frac{1}{3}, \frac{2}{3}, \frac{2}{3} ; \frac{2}{3}, \frac{1}{3}, \frac{1}{3}\right) \\
& \text { with } z=0 \cdot 33 \text {. }
\end{aligned}
$$

The intensities of 207 h 0 l reflections, of which 69 were too weak to be observed, were recorded. The atomic parameters, including isotropic temperature factors for each atom, were refined by repeated application of the least-squares method to these data. The calculated and observed structure factors are listed in Table 2 . The reliability coefficient, $R=$ $\Sigma\left|F_{o}-F_{c}\right| / \Sigma\left|F_{o}\right|$, was $0 \cdot 10$ at the end of the refinements. When the beryllium atoms were omitted from the calculation the reliability coefficient became $0 \cdot 13$.

Further refinement was attempted after correction of the niobium scattering factors for dispersion, using the tables of Dauben \& Templeton (1955). Little improvement in the reliability coefficient resulted from this calculation, however, and the changes in the atomic positions were insignificant.

The structure was also confirmed by the computation of the Fourier projection, $\varrho(x, z)$, on which all atoms were clearly visible at the appropriate positions.

The final $R \overline{3} m$ parameters of NbBe_{3} are listed in Table 3, and Table 4 shows the interatomic distances calculated from these positions. The standard deviations of the parameters were calculated by the method of Cruickshank (1949), and the probable errors of the distances were obtained according to Cruickshank \& Robertson (1953).

Discussion

The point symmetry at each niobium atom of the NbBe_{2} structure is $T_{d}-\overline{4} 3 \mathrm{~m}$. Its nearest neighbors consist of 12 Be atoms at $2.71 \AA$ and 4 Nb atoms at $2.83 \AA$. The configuration of the beryllium atoms

Table 4. Interatomic distances in NbBe_{3}

$\mathrm{Nb}_{\mathrm{I}^{-}} 2 \mathrm{Nb}_{\text {II }}$	$2.951 \pm 0.005 \AA$
$-6 \mathrm{Be}_{\text {II }}$	$2 \cdot 634 \pm 0.003$
-12 Be ${ }_{\text {III }}$	2.86 ± 0.02
$\mathrm{Nb}_{\text {II }}-1 \mathrm{Nb} \mathrm{I}$	2.951 ± 0.005
$-3 \mathrm{Nb}_{\text {II }}$	$2 \cdot 860 \pm 0.004$
- $3 \mathrm{Be}_{\mathrm{I}}$	$2 \cdot 692 \pm 0.003$
- $6 \mathrm{Be}_{\text {III }}$	2.59 ± 0.01
- 3 Be ${ }_{\text {III }}$	2.67 ± 0.04
$\mathrm{Be}_{\mathrm{I}^{-}} 6 \mathrm{Nb}_{\text {II }}$	2.692 ± 0.003
- $6 \mathrm{Be}_{\text {III }}$	2.24 ± 0.05
$\mathrm{Be}_{\text {II }}-3 \mathrm{Nb}_{\text {I }}$	2.634 ± 0.003
- $3 \mathrm{Be}_{\text {II }}$	2.634 ± 0.003
- $3 \mathrm{Be}_{\text {III }}$	2.17 ± 0.06
- 3 Be ${ }_{\text {III }}$	2.17 ± 0.06
$\mathrm{Be}_{\text {III }}{ }^{-2} \mathrm{Nb}_{\text {I }}$	2.86 ± 0.02
$-2 \mathrm{Nb}_{\text {II }}$	2.59 ± 0.01
$-1 \mathrm{Nb}_{\text {II }}$	2.67 ± 0.04
- $1 \mathrm{Be}_{\text {I }}$	2.24 ± 0.05
- $1 \mathrm{Be}_{\text {II }}$	2.17 ± 0.06
- $1 \mathrm{Be}_{\text {II }}$	2.17 ± 0.06
- 2 Be III	2.23 ± 0.06
$-2 \mathrm{Be}_{\text {III }}$	2.34 ± 0.06

around a niobium atom can be visualized by constructing a regular tetrahedron of edge $6.931 \AA$ about the niobium and cutting off the vertices at the points of trisection of the edges (Fig. 1). The resulting polyhedron has eight faces consisting of four equilateral triangles and four regular hexagons, eighteen edges of length $2 \cdot 310 \AA$, and twelve vertices each occupied by a beryllium atom. A niobium atom also has four niobium neighbors at a distance of $2.830 \AA$ along the

Fig. 1. Packing of Be atoms about Nb in NbBe_{2}, and about $\mathrm{Nb}_{\text {II }}$ in NbBe_{3}.
lines perpendicular to the hexagonal faces of the beryllium polyhedron. These niobium neighbors form another regular tetrahedron, of edge $4 \cdot 621 \AA$. The point symmetry at a beryllium atom is $D_{3 d}-\overline{3} m$. Each beryllium atom has six niobium neighbors at $2 \cdot 709 \AA$ and six beryllium neighbors at $2 \cdot 310 \AA$.

The niobium atoms in NbBe_{3} are of two types: Nb_{I} has two Nb nearest neighbors at $2.95 \AA$ and eighteen Be nearest neighbors at an average distance of $2.78 \AA$; $\mathrm{Nb}_{\text {II }}$ has four Nb nearest neighbors, three at $2.86 \AA$ and one at $2.95 \AA$, and twelve Be nearest neighbors at an average distance of $2 \cdot 64 \AA$. The configuration of nearest neighbors about $N b_{I I}$ is the same as that found about the Nb atoms in NbBe_{2}. The arrangement is distorted in this case, however, and the point symmetry of $\mathrm{Nb}_{\text {II }}$ is $C_{3 v}-3 m$. An Nb_{I} atom has the point symmetry $D_{3 d}-\overline{3} m$. It is collinear with its two $\mathrm{Nb}_{\text {II }}$ neighbors (at $2.95 \AA$), and it is at the center of the regular hexagon formed by its six $\mathrm{Be}_{\text {II }}$ neighbors. The twelve $\mathrm{Be}_{\text {III }}$ neighbors of Nb_{I} form two smaller hexagons above and below Nb_{I}, parallel

Fig. 2. Packing of Be atoms about Nb_{I} in NbBe_{3}.
to and rotated 30° with respect to the Be_{2} hexagon (Fig. 2). Each beryllium atom has twelve nearest neighbors; the types and distances of these neighbors are shown in Table 4. The $\mathrm{Be}_{\text {III }}-\mathrm{Be}_{\text {III }}$ distances are calculated to be alternately $2 \cdot 23$ and $2.34 \AA$, but they are within experimental error of being equal. Although there are two crystallographically distinct $\mathrm{Be}_{\text {II }}-\mathrm{Be}_{\text {III }}$ separations, these distances are calculated to be the same.

The $\mathrm{Nb}-\mathrm{Nb}$ interatomic distance in metallic niobium is $2.86 \AA$, and the average $\mathrm{Be}-\mathrm{Be}$ distance in metallic beryllium is $2 \cdot 26 \AA$. All of the $\mathrm{Nb}-\mathrm{Nb}$ and $\mathrm{Be}-\mathrm{Be}$ nearest neighbor separations in NbBe_{2} and NbBe_{3} are within 4% of these values.

The environment shown in Fig. 2 occurs also in the CaZn_{5} structure (Haucke, 1940).

We thank Mr Vernon Silveira for photographing and measuring the many powder patterns necessary for this work.

References

Baenziger, N., Wilson, A. \& Snow, A. (1946). Unpublished Progress Report, Iowa State College.
Batchelder, F. W. von \& Raeuchle, R. F. (1957). Acta Cryst. 10, 648.
Berghuis, J., Hanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. \& Veenendaal, A.L. (1955). Acta Cryst. 8, 478.

Cruickshank, D. W. J. (1949). Acta Cryst. 2, 154.
Cruickshank, D. W. J. \& Robertson, A. P. (1953). Acta Cryst. 6, 698.
Dauben, C. H. \& Templeton, D. H. (1955). Acta Cryst. 8, 841.
Ehrlich, P. (1949). Z. anorg. Chem. 259, 1.
Friauf, J. B. (1927). J. Amer. Chem. Soc. 49, 3107.
Haucke, W. (1940). Z. anorg. Chem. 244, 17.
International Tables for X-ray Crystallography (1952). Vol. 1. Birmingham: Kynoch Press.
Klug, H. P. \& Alexander, L. E. (1954). X-ray Diffraction Procedures. New York: Wiley.
Misch, L. (1936). Metallwirtschaft 15, 163.
White, D. W., Jr. \& Burke, J. E. (1955). The Metal Beryllium. Cleveland: The American Society for Metals. Winkler, O. (1938). Z. Metallk. 30, 162.

[^0]: * This work was performed under the auspices of the U.S. Atomic Energy Commission.

